Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.061
1.
Sci Adv ; 10(18): eadn6537, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701219

In mammals, males and females show marked differences in immune responses. Males are globally more sensitive to infectious diseases, while females are more susceptible to systemic autoimmunity. X-chromosome inactivation (XCI), the epigenetic mechanism ensuring the silencing of one X in females, may participate in these sex biases. We perturbed the expression of the trigger of XCI, the noncoding RNA Xist, in female mice. This resulted in reactivation of genes on the inactive X, including members of the Toll-like receptor 7 (TLR7) signaling pathway, in monocyte/macrophages and dendritic and B cells. Consequently, female mice spontaneously developed inflammatory signs typical of lupus, including anti-nucleic acid autoantibodies, increased frequencies of age-associated and germinal center B cells, and expansion of monocyte/macrophages and dendritic cells. Mechanistically, TLR7 signaling is dysregulated in macrophages, leading to sustained expression of target genes upon stimulation. These findings provide a direct link between maintenance of XCI and female-biased autoimmune manifestations and highlight altered XCI as a cause of autoimmunity.


Autoimmunity , Macrophages , Toll-Like Receptor 7 , X Chromosome Inactivation , Animals , Female , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Autoimmunity/genetics , Mice , Male , Macrophages/metabolism , Macrophages/immunology , RNA, Long Noncoding/genetics , Signal Transduction , Dendritic Cells/immunology , Dendritic Cells/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology
2.
Proc Natl Acad Sci U S A ; 121(19): e2319569121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38683985

Toll-like receptors (TLRs) are crucial components of the innate immune system. Endosomal TLR7 recognizes single-stranded RNAs, yet its endogenous ssRNA ligands are not fully understood. We previously showed that extracellular (ex-) 5'-half molecules of tRNAHisGUG (the 5'-tRNAHisGUG half) in extracellular vesicles (EVs) of human macrophages activate TLR7 when delivered into endosomes of recipient macrophages. Here, we fully explored immunostimulatory ex-5'-tRNA half molecules and identified the 5'-tRNAValCAC/AAC half, the most abundant tRNA-derived RNA in macrophage EVs, as another 5'-tRNA half molecule with strong TLR7 activation capacity. Levels of the ex-5'-tRNAValCAC/AAC half were highly up-regulated in macrophage EVs upon exposure to lipopolysaccharide and in the plasma of patients infected with Mycobacterium tuberculosis. The 5'-tRNAValCAC/AAC half-mediated activation of TLR7 effectively eradicated bacteria infected in macrophages. Mutation analyses of the 5'-tRNAValCAC/AAC half identified the terminal GUUU sequence as a determinant for TLR7 activation. We confirmed that GUUU is the optimal ratio of guanosine and uridine for TLR7 activation; microRNAs or other RNAs with the terminal GUUU motif can indeed stimulate TLR7, establishing the motif as a universal signature for TLR7 activation. These results advance our understanding of endogenous ssRNA ligands of TLR7 and offer insights into diverse TLR7-involved pathologies and their therapeutic strategies.


Macrophages , Toll-Like Receptor 7 , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Humans , Macrophages/metabolism , Macrophages/immunology , Ligands , Mycobacterium tuberculosis/immunology , RNA, Transfer, His/metabolism , RNA, Transfer, His/genetics , Lipopolysaccharides
3.
Viruses ; 16(4)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38675965

Epstein-Barr virus (EBV), a Herpesviridae family member, is associated with an increased risk of autoimmune disease development in the host. We previously demonstrated that EBV DNA elevates levels of the pro-inflammatory cytokine IL-17A and that inhibiting Toll-like receptor (TLR) 3, 7, or 9 reduces its levels. Moreover, this DNA exacerbated colitis in a mouse model of inflammatory bowel disease (IBD). In the study at hand, we examined whether inhibition of TLR3, 7, or 9 alleviates this exacerbation. Mice were fed 1.5% dextran sulfate sodium (DSS) water and administered EBV DNA. Then, they were treated with a TLR3, 7, or 9 inhibitor or left untreated. We also assessed the additive impact of combined inhibition of all three receptors. Mice that received DSS, EBV DNA, and each inhibitor alone, or a combination of inhibitors, showed significant improvement. They also had a decrease in the numbers of the pathogenic colonic IL-17A+IFN-γ+ foci. Inhibition of all three endosomal TLR receptors offered no additive benefit over administering a single inhibitor. Therefore, inhibition of endosomal TLRs reduces EBV DNA exacerbation of mouse colitis, offering a potential approach for managing IBD patients infected with EBV.


DNA, Viral , Disease Models, Animal , Herpesvirus 4, Human , Inflammatory Bowel Diseases , Membrane Glycoproteins , Toll-Like Receptor 9 , Animals , Mice , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/virology , Toll-Like Receptor 9/antagonists & inhibitors , Toll-Like Receptor 9/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/drug therapy , Endosomes/metabolism , Dextran Sulfate , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/antagonists & inhibitors , Toll-Like Receptor 7/metabolism , Mice, Inbred C57BL , Interleukin-17/metabolism , Colitis/virology , Colitis/chemically induced , Toll-Like Receptors/metabolism , Female
4.
Cell Commun Signal ; 22(1): 220, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589923

Endosomal single-stranded RNA-sensing Toll-like receptor-7/8 (TLR7/8) plays a pivotal role in inflammation and immune responses and autoimmune diseases. However, the mechanisms underlying the initiation of the TLR7/8-mediated autoimmune signaling remain to be fully elucidated. Here, we demonstrate that miR-574-5p is aberrantly upregulated in tissues of lupus prone mice and in the plasma of lupus patients, with its expression levels correlating with the disease activity. miR-574-5p binds to and activates human hTLR8 or its murine ortholog mTlr7 to elicit a series of MyD88-dependent immune and inflammatory responses. These responses include the overproduction of cytokines and interferons, the activation of STAT1 signaling and B lymphocytes, and the production of autoantigens. In a transgenic mouse model, the induction of miR-574-5p overexpression is associated with increased secretion of antinuclear and anti-dsDNA antibodies, increased IgG and C3 deposit in the kidney, elevated expression of inflammatory genes in the spleen. In lupus-prone mice, lentivirus-mediated silencing of miR-574-5p significantly ameliorates major symptoms associated with lupus and lupus nephritis. Collectively, these results suggest that the miR-574-5p-hTLR8/mTlr7 signaling is an important axis of immune and inflammatory responses, contributing significantly to the development of lupus and lupus nephritis.


Lupus Nephritis , MicroRNAs , Humans , Mice , Animals , Lupus Nephritis/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism , Kidney/metabolism , Mice, Transgenic , MicroRNAs/genetics
5.
Cell Mol Life Sci ; 81(1): 199, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683377

Tyrosine kinase 2 (TYK2) is involved in type I interferon (IFN-I) signaling through IFN receptor 1 (IFNAR1). This signaling pathway is crucial in the early antiviral response and remains incompletely understood on B cells. Therefore, to understand the role of TYK2 in B cells, we studied these cells under homeostatic conditions and following in vitro activation using Tyk2-deficient (Tyk2-/-) mice. Splenic B cell subpopulations were altered in Tyk2-/- compared to wild type (WT) mice. Marginal zone (MZ) cells were decreased and aged B cells (ABC) were increased, whereas follicular (FO) cells remained unchanged. Likewise, there was an imbalance in transitional B cells in juvenile Tyk2-/- mice. RNA sequencing analysis of adult MZ and FO cells isolated from Tyk2-/- and WT mice in homeostasis revealed altered expression of IFN-I and Toll-like receptor 7 (TLR7) signaling pathway genes. Flow cytometry assays corroborated a lower expression of TLR7 in MZ B cells from Tyk2-/- mice. Splenic B cell cultures showed reduced proliferation and differentiation responses after activation with TLR7 ligands in Tyk2-/- compared to WT mice, with a similar response to lipopolysaccharide (LPS) or anti-CD40 + IL-4. IgM, IgG, IL-10 and IL-6 secretion was also decreased in Tyk2-/- B cell cultures. This reduced response of the TLR7 pathway in Tyk2-/- mice was partially restored by IFNα addition. In conclusion, there is a crosstalk between TYK2 and TLR7 mediated by an IFN-I feedback loop, which contributes to the establishment of MZ B cells and to B cell proliferation and differentiation.


B-Lymphocytes , Interferon Type I , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Spleen , TYK2 Kinase , Toll-Like Receptor 7 , Animals , Spleen/cytology , Spleen/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Mice , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , TYK2 Kinase/metabolism , TYK2 Kinase/genetics , Interferon Type I/metabolism , Cell Differentiation , Cell Proliferation , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Cells, Cultured
6.
Org Biomol Chem ; 22(14): 2764-2773, 2024 04 03.
Article En | MEDLINE | ID: mdl-38497199

Pattern recognition receptors (PRRs) play a critical role in the innate immune response, and toll-like receptor 7 (TLR7) is an important member of PRRs. Although several TLR7 agonists are available, most of them are being tested clinically, with only one available on the market. Thus, it is imperative to develop new TLR7 agonists. In this study, we designed and synthesized three kinds of quinazoline derivatives and five kinds of pyrrolo[3,2-d]pyrimidine derivatives targeting TLR7. The antiviral efficacy of these compounds was evaluated in vitro and in vivo. Our findings indicated that four kinds of compounds showed exceptional antiviral activity. Furthermore, molecular docking studies confirmed that compound 11 successfully positioned itself in the pocket of the TLR7 guanosine loading site with a binding energy of -4.45 kcal mol-1. These results suggested that these compounds might be potential antiviral agents.


Quinazolines , Toll-Like Receptor 7 , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism , Quinazolines/chemistry , Molecular Docking Simulation , Adjuvants, Immunologic , Antiviral Agents/pharmacology , Pyrimidines/chemistry
7.
Cells ; 13(5)2024 Feb 26.
Article En | MEDLINE | ID: mdl-38474371

Toll-like receptors (TLRs) are a collection of pattern recognition sensors that form a first line of defence by detecting pathogen- or damage-associated molecular patterns and initiating an inflammatory response. TLR activation in microglia, the major immune cells in the brain, can trigger the release of inflammatory molecules, which may contribute to various CNS diseases including Alzheimer's disease. Recently, some microRNAs were shown to serve as signalling molecules for TLRs. Here, we present miR-154-5p as a novel TLR7 ligand. Exposing microglia to miR-154-5p results in cytokine release and alters expression of the TLR signalling pathway dependent on TLR7. Additionally, miR-154-5p causes neuronal injury in enriched cortical neuron cultures and additive toxicity in the presence of microglia. Finally, intrathecal injection of miR-154-5p into mice leads to neuronal injury and accumulation of microglia in the cerebral cortex dependent on TLR7 expression. In conclusion, this study establishes miR-154-5p as a direct activator of TLR7 that can cause neuroinflammation and neuronal injury, which may contribute to CNS disease.


MicroRNAs , Microglia , Toll-Like Receptor 7 , Animals , Mice , Ligands , Microglia/metabolism , MicroRNAs/metabolism , Neurons/metabolism , Toll-Like Receptor 7/metabolism , Humans
8.
Cell Mol Life Sci ; 81(1): 110, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429401

Toll-like receptors (TLRs), especially TLR7, play an important role in systemic lupus erythematosus (SLE) pathogenesis. However, the regulatory mechanism underlying the abnormal activation of TLR pathways in patients with SLE has not been elucidated. Notably, accumulating evidence indicates that myeloid-derived suppressor cells (MDSCs) are important regulators of inflammation and autoimmune diseases. Compared with healthy control subjects, patients with SLE have a greater proportion of MDSCs among peripheral blood mononuclear cells (PBMCs); however, the effect of MDSCs on TLR7 pathway activation has not been determined. In the present study, lupus MDSCs significantly promoted TLR7 pathway activation in macrophages and dendritic cells (DCs), exacerbating the imiquimod-induced lupus model. RNA-sequencing analysis revealed significant overexpression of S100 calcium-binding protein A8 (S100A8) and S100A9 in MDSCs from diseased MRL/lpr mice. In vitro and in vivo studies demonstrated that S100A8/9 effectively promoted TLR7 pathway activation and that S100A8/9 deficiency reversed the promoting effect of MDSCs on TLR7 pathway activation in lupus. Mechanistically, MDSC-derived S100A8/9 upregulated interferon gamma (IFN-γ) secretion by macrophages and IFN-γ subsequently promoted TLR7 pathway activation in an autocrine manner. Taken together, these findings suggest that lupus MDSCs promote TLR7 pathway activation and lupus pathogenesis through the S100A8/9-IFN-γ axis. Our study identified an important target for SLE therapy.


Calgranulin A , Calgranulin B , Lupus Erythematosus, Systemic , Myeloid-Derived Suppressor Cells , Animals , Mice , Dendritic Cells/metabolism , Leukocytes, Mononuclear/metabolism , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Macrophages/metabolism , Mice, Inbred MRL lpr , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Calgranulin A/metabolism , Calgranulin B/metabolism
9.
Front Immunol ; 15: 1329805, 2024.
Article En | MEDLINE | ID: mdl-38481993

mRNA vaccine technologies introduced following the SARS-CoV-2 pandemic have highlighted the need to better understand the interaction of adjuvants and the early innate immune response. Type I interferon (IFN-I) is an integral part of this early innate response that primes several components of the adaptive immune response. Women are widely reported to respond better than men to tri- and quadrivalent influenza vaccines. Plasmacytoid dendritic cells (pDCs) are the primary cell type responsible for IFN-I production, and female pDCs produce more IFN-I than male pDCs since the upstream pattern recognition receptor Toll-like receptor 7 (TLR7) is encoded by X chromosome and is biallelically expressed by up to 30% of female immune cells. Additionally, the TLR7 promoter contains several putative androgen response elements, and androgens have been reported to suppress pDC IFN-I in vitro. Unexpectedly, therefore, we recently observed that male adolescents mount stronger antibody responses to the Pfizer BNT162b2 mRNA vaccine than female adolescents after controlling for natural SARS-CoV-2 infection. We here examined pDC behaviour in this same cohort to determine the impact of IFN-I on anti-spike and anti-receptor-binding domain IgG titres to BNT162b2. Through flow cytometry and least absolute shrinkage and selection operator (LASSO) modelling, we determined that serum-free testosterone was associated with reduced pDC IFN-I, but contrary to the well-described immunosuppressive role for androgens, the most bioactive androgen dihydrotestosterone was associated with increased IgG titres to BNT162b2. Also unexpectedly, we observed that co-vaccination with live attenuated influenza vaccine boosted the magnitude of IgG responses to BNT162b2. Together, these data support a model where systemic IFN-I increases vaccine-mediated immune responses, yet for vaccines with intracellular stages, modulation of the local IFN-I response may alter antigen longevity and consequently improve vaccine-driven immunity.


Influenza Vaccines , Interferon Type I , Humans , Male , Female , Adolescent , Interferon-alpha , Influenza Vaccines/metabolism , Toll-Like Receptor 7/metabolism , Androgens/metabolism , BNT162 Vaccine , mRNA Vaccines , Interferon Type I/metabolism , Vaccination , Dendritic Cells , Immunoglobulin G/metabolism
10.
J Innate Immun ; 16(1): 216-225, 2024.
Article En | MEDLINE | ID: mdl-38461810

INTRODUCTION: Toll-like receptors play crucial roles in the sepsis-induced systemic inflammatory response. Septic shock mortality correlates with overexpression of neutrophilic TLR2 and TLR9, while the role of TLR4 overexpression remains a debate. In addition, TLRs are involved in the pathogenesis of viral infections such as COVID-19, where the single-stranded RNA of SARS-CoV-2 is recognized by TLR7 and TLR8, and the spike protein activates TLR4. METHODS: In this study, we conducted a comprehensive analysis of TLRs 1-10 expressions in white blood cells from 71 patients with bacterial and viral infections. Patients were divided into 4 groups based on disease type and severity (sepsis, septic shock, moderate, and severe COVID-19) and compared to 7 healthy volunteers. RESULTS: We observed a significant reduction in the expression of TLR4 and its co-receptor CD14 in septic shock neutrophils compared to the control group (p < 0.001). Severe COVID-19 patients exhibited a significant increase in TLR3 and TLR7 levels in neutrophils compared to controls (p < 0.05). Septic shock patients also showed a similar increase in TLR7 in neutrophils along with elevated intermediate monocytes (CD14+CD16+) compared to the control group (p < 0.005 and p < 0.001, respectively). However, TLR expression remained unchanged in lymphocytes. CONCLUSION: This study provides further insights into the mechanisms of TLR activation in various infectious conditions. Additional analysis is needed to assess their correlation with patient outcome and to evaluate the impact of TLR-pathway modulation during septic shock and severe COVID-19.


COVID-19 , SARS-CoV-2 , Toll-Like Receptor 10 , Aged , Female , Humans , Male , Middle Aged , Bacterial Infections/immunology , COVID-19/immunology , COVID-19/blood , Leukocytes/immunology , Leukocytes/metabolism , Lipopolysaccharide Receptors/metabolism , Neutrophils/immunology , SARS-CoV-2/immunology , Sepsis/immunology , Shock, Septic/immunology , Shock, Septic/blood , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 1/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptors/metabolism , Aged, 80 and over
11.
J Autoimmun ; 145: 103189, 2024 May.
Article En | MEDLINE | ID: mdl-38442677

OBJECTIVES: Monocyte-derived dendritic cells (DCs) are key players in the induction of inflammation, autoreactive T cell activation and loss of tolerance in rheumatoid arthritis (RA), but the precise mechanisms underlying their activation remain elusive. Here, we hypothesized that extracellular microRNAs released in RA synovial fluids may represent a novel, physiological stimulus triggering unwanted immune response via TLR8-expressing DC stimulation. METHODS: Human monocyte-derived DCs were stimulated with a mixture of GU-rich miRNAs upregulated in RA tissues and released in synovial fluids (Ex-miRNAs). Activation of DCs was assessed in terms of NF-κB activation by Western blot, cytokine production by ELISA, T cell proliferation and polarization by allogeneic mixed lymphocyte reaction. DC differentiation into osteoclasts was evaluated in terms of tartrate-resistant acid phosphatase production and formation of resorption pits in dentine slices. Induction of joint inflammation in vivo was evaluated using a murine model of DC-induced arthritis. TLR7/8 involvement was assessed by specific inhibitors. RESULTS: Ex-miRNAs activate DCs to secrete TNFα, induce joint inflammation, start an early autoimmune response and potentiate the differentiation of DCs into aggressive osteoclasts. CONCLUSIONS: This work represents a proof of concept that the pool of extracellular miRNAs overexpressed in RA joints can act as a physiological activator of inflammation via the stimulation of TLR8 expressed by human DCs, which in turn exert arthritogenic functions. In this scenario, pharmacological inhibition of TLR8 might offer a new therapeutic option to reduce inflammation and osteoclast-mediated bone destruction in RA.


Arthritis, Rheumatoid , Cell Differentiation , Dendritic Cells , MicroRNAs , Osteoclasts , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , MicroRNAs/genetics , Toll-Like Receptor 8/metabolism , Osteoclasts/metabolism , Osteoclasts/immunology , Animals , Toll-Like Receptor 7/metabolism , Mice , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Synovial Fluid/immunology , Synovial Fluid/metabolism , Cells, Cultured , Female , Male
12.
J Med Chem ; 67(5): 3321-3338, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38363069

Immunotherapy targeting the toll-like receptor 7 (TLR7) is a promising strategy for cancer treatment. Herein, we describe the design and synthesis of a series of imidazoquinoline-based TLR7 agonists and assess NF-κB pathway activation using HEK-Blue hTLR7 cells to identify the most potent small-molecule TLR7 agonist, SMU-L11 (EC50 = 0.024 ± 0.002 µM). In vitro experiments demonstrated that SMU-L11 specifically activated TLR7, resulting in recruitment of the MyD88 adaptor protein and activation of the NF-κB and MAPK signaling pathways. Moreover, SMU-L11 was found to exert immune-enhancing effects by significantly inducing the secretion of proinflammatory cytokines in murine dendritic cells, macrophages, and human peripheral blood mononuclear cells while promoting M1 macrophage polarization. In vivo studies using a B16-F10 mouse tumor model showed that SMU-L11 significantly enhanced immune cell activation and augmented CD4+ T and CD8+ T-cell proliferation, directly killing tumor cells and inhibiting tumor growth.


Melanoma , Humans , Animals , Mice , Melanoma/drug therapy , Melanoma/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 7/metabolism , Tumor Microenvironment , Leukocytes, Mononuclear/metabolism , Adjuvants, Immunologic/metabolism
13.
Physiol Rep ; 12(3): e15949, 2024 Feb.
Article En | MEDLINE | ID: mdl-38346802

Toll-like receptor-7 (TLR7) activation promotes autoimmunity, and metabolic syndrome (MetS) is a common comorbidity in patients with autoimmune disease. We previously demonstrated hyperinsulinemia in TLR7 agonist imiquimod (IMQ)-treated, high-fat diet (HFD)-fed female C57BL/6 mice. Since mouse strains differ in susceptibility to MetS and target organ damage, this study investigated whether 12 weeks of exposure to HFD and IMQ promoted MetS, autoimmunity, and target organ damage in female FVB/N mice. Supporting early-stage autoimmunity, spleen-to-tibia ratio, and anti-nuclear antibodies (ANA) were significantly increased by IMQ. No significant effect of IMQ on urinary albumin excretion or left ventricular hypertrophy was observed. HFD increased liver-to-tibia ratio, which was further exacerbated by IMQ. HFD increased fasting blood glucose levels at the end of 12 weeks, but there was no significant effect of IMQ treatment on fasting blood glucose levels at 6 or 12 weeks of treatment. However, oral glucose tolerance testing at 12 weeks revealed impaired glucose tolerance in HFD-fed mice compared to control diet mice together with IMQ treatment exacerbating the impairment. Accordingly, these data suggest TLR7 activation also exacerbates HFD-induced dysregulation of glucose handling FVB/N mice, supporting the possibility that endogenous TLR7 activation may contribute to dysglycemia in patients with autoimmune disease.


Autoimmune Diseases , Metabolic Syndrome , Humans , Female , Mice , Animals , Imiquimod/pharmacology , Diet, High-Fat/adverse effects , Blood Glucose/metabolism , Toll-Like Receptor 7/metabolism , Glycemic Control , Mice, Inbred C57BL , Mice, Inbred Strains
14.
Adv Healthc Mater ; 13(11): e2303910, 2024 Apr.
Article En | MEDLINE | ID: mdl-38180445

Self-assembling protein nanoparticles are a promising class of materials for targeted drug delivery. Here, the use of a computationally designed, two-component, icosahedral protein nanoparticle is reported to encapsulate multiple macromolecular cargoes via simple and controlled self-assembly in vitro. Single-stranded RNA molecules between 200 and 2500 nucleotides in length are encapsulated and protected from enzymatic degradation for up to a month with length-dependent decay rates. Immunogenicity studies of nanoparticles packaging synthetic polymers carrying a small-molecule TLR7/8 agonist show that co-delivery of antigen and adjuvant results in a more than 20-fold increase in humoral immune responses while minimizing systemic cytokine secretion associated with free adjuvant. Coupled with the precise control over nanoparticle structure offered by computational design, robust and versatile encapsulation via in vitro assembly opens the door to a new generation of cargo-loaded protein nanoparticles that can combine the therapeutic effects of multiple drug classes.


Nanoparticles , Nanoparticles/chemistry , Animals , Mice , Proteins/chemistry , Toll-Like Receptor 8/metabolism , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/chemistry , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/agonists
15.
Ticks Tick Borne Dis ; 15(2): 102307, 2024 03.
Article En | MEDLINE | ID: mdl-38194758

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS, with a case fatality rate of up to 30 %. The innate immune system plays a crucial role in the defense against SFTSV; however, the impact of viral propagation of STFSV on the innate immune system remains unclear. Although proteomics analysis revealed that the expression of the downregulator of transcription 1 (DR1) increased after SFTSV infection, the specific change trend and the functional role of DR1 during viral infection remain unelucidated. In this study, we demonstrate that DR1 was highly expressed in response to SFTSV infection in HEK 293T cells using qRT-PCR and Western blot analysis. Furthermore, viral replication significantly increased the expression of various TLRs, especially TLR9. Our data indicated that DR1 positively regulated the expression of TLRs in HEK 293T cells, DR1 overexpression highly increased the expression of numerous TLRs, whereas RNAi-mediated DR1 silencing decreased TLR expression. Additionally, the myeloid differentiation primary response gene 88 (MyD88)-dependent or TIR-domain-containing adaptor inducing interferon-ß (TRIF)-dependent signaling pathways were highly up- and downregulated by the overexpression and silencing of DR1, respectively. Finally, we report that DR1 stimulates the expression of TLR7, TLR8, and TLR9, thereby upregulating the TRIF-dependent and MyD88-dependent signaling pathways during the SFTSV infection, attenuating viral replication, and enhancing the production of type I interferon and various inflammatory factors, including IL-1ß, IL-6, and IL-8. These results imply that DR1 defends against SFTSV replication by inducing the expression of TLR7, TLR8, and TLR9. Collectively, our findings revealed a novel role and mechanism of DR1 in mediating antiviral responses and innate immunity.


Bunyaviridae Infections , Phlebovirus , Phosphoproteins , Signal Transduction , Transcription Factors , Animals , Humans , Adaptor Proteins, Vesicular Transport/metabolism , Down-Regulation , HEK293 Cells , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Phosphoproteins/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism , Toll-Like Receptor 9/metabolism , Transcription Factors/metabolism , Phlebovirus/physiology , Bunyaviridae Infections/immunology , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology
16.
J Leukoc Biol ; 115(1): 190-200, 2024 01 05.
Article En | MEDLINE | ID: mdl-37747799

Plasmacytoid dendritic cells are a rare subset of dendritic cells that exhibit antiviral functions in response to toll-like receptor 7/8 stimulations. Alternative toll-like receptors such as TLR4 have been known to be active in plasmacytoid dendritic cells for immune regulatory functions. However, it is unclear whether these toll-like receptors differentially activate plasmacytoid dendritic cells as compared with canonical toll-like receptor 7/8 stimulation. Here, we assessed alternative plasmacytoid dendritic cell activation states mediated by toll-like receptors other than endosomal toll-like receptors via the RNA sequencing approach. We found that toll-like receptor 4 stimulation induced a high degree of similarity in gene expression pattern to toll-like receptor 7/8 stimulation in plasmacytoid dendritic cells. Despite high resemblance to toll-like receptor 7/8, we discovered unique genes that were activated under toll-like receptor 4 activation only, as well as genes that were induced at a higher magnitude in comparison to toll-like receptor 7/8 activation. In comparison between toll-like receptor 4-activated plasmacytoid dendritic cells and conventional dendritic cells, we revealed that plasmacytoid dendritic cells and conventional dendritic cells expressed distinct gene sets, whereby conventional dendritic cells mostly favored antigen presentation functions for adaptive immune response regulation while plasmacytoid dendritic cells leaned toward immune response against infectious diseases. Last, we determined that toll-like receptor 4 activation sensitized plasmacytoid dendritic cells against SARS-CoV-2 (COVID-19) single-stranded RNA by enhancing antiviral-related responses and type I interferon production. These findings provided greater insights into the toll-like receptor 4 activation state in plasmacytoid dendritic cells, which can be beneficial for alternative therapeutic interventions involving plasmacytoid dendritic cells for various diseases.


COVID-19 , Toll-Like Receptor 7 , Humans , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 4/metabolism , SARS-CoV-2/metabolism , COVID-19/metabolism , Toll-Like Receptors/metabolism , Dendritic Cells , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Toll-Like Receptor 9/metabolism
17.
J Pharmacol Exp Ther ; 388(3): 751-764, 2024 02 15.
Article En | MEDLINE | ID: mdl-37673681

Toll-like receptor 7 (TLR7) and TLR8 are single-stranded RNA-sensing endosomal pattern recognition receptors that evolved to defend against viral infections. However, aberrant TLR7/8 activation by endogenous ligands has been implicated in the pathogenesis of autoimmune diseases including systemic lupus erythematosus. TLR activation and type I interferon (IFN) were shown recently to impart resistance to glucocorticoids (GC), which are part of the standard of care for multiple autoimmune diseases. While GCs are effective, a plethora of undesirable effects limit their use. New treatment approaches that allow for the use of lower and safer doses of GCs would be highly beneficial. Herein, we report that a dual TLR7/8 inhibitor (TLR7/8i) increases the effectiveness of GCs in inflammatory settings. Human peripheral blood mononuclear cell studies revealed increased GC sensitivity in the presence of TLR7/8i for reducing inflammatory cytokine production, a synergistic effect that was most pronounced in myeloid cells, particularly monocytes. Gene expression analysis by NanoString and single-cell RNA sequencing revealed that myeloid cells were substantially impacted by combining low-dose TLR7/8i and GC, as evidenced by the effects on nuclear factor-kappa B-regulated cytokines and GC-response genes, although IFNs were affected to a smaller degree. Low dose of TLR7/8i plus GC was more efficacious then either agent alone in the MRL/lpr mouse model of lupus, with improved proteinuria and survival. Overall, our findings indicate a GC-sparing potential for TLR7/8i compounds, suggesting TLR7/8i may offer a new strategy for the treatment of autoimmune diseases. SIGNIFICANCE STATEMENT: Some features of autoimmune diseases may be resistant to glucocorticoids, mediated at least in part by toll-like receptor (TLR) activation, necessitating higher doses that are associated with considerable toxicities. We demonstrate that TLR7/8 inhibition and glucocorticoids work synergistically to reduce inflammation in a cell-type specific manner and suppress disease in a mouse model of lupus. TLR7/8 inhibition is a promising strategy for the treatment of autoimmune diseases and has glucocorticoid-sparing potential.


Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Mice , Animals , Humans , Toll-Like Receptor 7/metabolism , Glucocorticoids/pharmacology , Leukocytes, Mononuclear/metabolism , Mice, Inbred MRL lpr , Toll-Like Receptors , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/genetics
18.
J Leukoc Biol ; 115(3): 497-510, 2024 02 23.
Article En | MEDLINE | ID: mdl-37930711

Primary Sjögren's disease (pSD) (also referred to as Sjögren's syndrome) is an autoimmune disease that primarily occurs in women. In addition to exocrine gland dysfunction, pSD patients exhibit B cell hyperactivity. B cell-intrinsic TLR7 activation is integral to the pathogenesis of systemic lupus erythematosus, a disease that shares similarities with pSD. The role of TLR7-mediated B cell activation in pSD, however, remains poorly understood. We hypothesized that age-associated B cells (ABCs) were expanded in pSD and that TLR7-stimulated ABCs exhibited pathogenic features characteristic of disease. Our data revealed that ABC expansion and TLR7 expression were enhanced in a pSD mouse model in a Myd88-dependent manner. Splenocytes from pSD mice showed enhanced sensitivity to TLR7 agonism as compared with those derived from control animals. Sort-purified marginal zone B cells and ABCs from pSD mice showed enhanced inflammatory cytokine secretion and were enriched for antinuclear autoantibodies following TLR7 agonism. Finally, IgG from pSD patient sera showed elevated antinuclear autoantibodies, many of which were secreted preferentially by TLR7-stimulated murine marginal zone B cells and ABCs. These data indicate that pSD B cells are hyperresponsive to TLR7 agonism and that TLR7-activated B cells contribute to pSD through cytokine and autoantibody production. Thus, therapeutics that target TLR7 signaling cascades in B cells may have utility in pSD patients.


Antibodies, Antinuclear , Sjogren's Syndrome , Humans , Mice , Female , Animals , Autoantibodies , Toll-Like Receptor 7/metabolism , Cytokines/metabolism , Disease Models, Animal
19.
Immunology ; 171(3): 413-427, 2024 Mar.
Article En | MEDLINE | ID: mdl-38150744

Toll-like receptors (TLRs) play an important role in inducing innate and acquired immune responses against infection. However, the effect of Toll-like receptor 7 (TLR7) on follicular helper T (Tfh) cells in mice infected with Plasmodium is still not clear. The results showed that the splenic CD4+ CXCR5+ PD-1+ Tfh cells were accumulated after Plasmodium yoelii NSM infection, the content of splenic Tfh cells was correlated to parasitemia and/or the red blood cells (RBCs) counts in the blood. Moreover, the expression of TLR7 was found higher than TLR2, TLR3 and TLR4 in splenic Tfh cells of the WT mice. TLR7 agonist R848 and the lysate of red blood cells of infected mice (iRBCs) could induce the activation and differentiation of splenic Tfh cells. Knockout of TLR7 leads to a decrease in the proportion of Tfh cells, down-regulated expression of functional molecules CD40L, IFN-γ, IL-21 and IL-10 in Tfh cells; decreased the proportion of plasma cells and antibody production and reduces the expression of STAT3 and Ikzf2 in Tfh cells. Administration of R848 could inhibit parasitemia, enhance splenic Tfh cell activation and increase STAT3 and Ikzf2 expression in Tfh cells. In summary, this study shows that TLR7 could regulate the function of Tfh cells, affecting the immune response in the spleen of Plasmodium yoelii NSM-infected mice.


Malaria , Plasmodium yoelii , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Parasitemia/metabolism , Plasmodium yoelii/metabolism , T Follicular Helper Cells/metabolism , T-Lymphocytes, Helper-Inducer , Toll-Like Receptor 7/metabolism
20.
Schizophr Bull ; 50(2): 403-417, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38102721

BACKGROUND AND HYPOTHESES: Previous studies revealed innate immune system activation in people with schizophrenia (SZ), potentially mediated by endogenous pathogen recognition receptors, notably Toll-like receptors (TLR). TLRs are activated by pathogenic molecules like bacterial lipopolysaccharides (TLR1 and TLR4), viral RNA (TLR3), or both (TLR8). Furthermore, the complement system, another key component of innate immunity, has previously been linked to SZ. STUDY DESIGN: Peripheral mRNA levels of TLR1, TLR3, TLR4, and TLR8 were compared between SZ and healthy controls (HC). We investigated their relationship with immune activation through complement expression and cortical thickness of the cingulate gyrus, a region susceptible to immunological hits. TLR mRNA levels and peripheral complement receptor mRNA were extracted from 86 SZ and 77 HC white blood cells; structural MRI scans were conducted on a subset. STUDY RESULTS: We found significantly higher TLR4 and TLR8 mRNA levels and lower TLR3 mRNA levels in SZ compared to HC. TLRs and complemental factors were significantly associated in SZ and HC, with the strongest deviations of TLR mRNA levels in the SZ subgroup having elevated complement expression. Cortical thickness of the cingulate gyrus was inversely associated with TLR8 mRNA levels in SZ, and with TLR4 and TLR8 levels in HC. CONCLUSIONS: The study underscores the role of innate immune activation in schizophrenia, indicating a coordinated immune response of TLRs and the complement system. Our results suggest there could be more bacterial influence (based on TLR 4 levels) as opposed to viral influence (based on TLR3 levels) in schizophrenia. Specific TLRs were associated with brain cortical thickness reductions of limbic brain structures.


Schizophrenia , Toll-Like Receptor 4 , Humans , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 8/metabolism , Toll-Like Receptor 3/metabolism , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism , Cerebral Cortical Thinning , RNA, Messenger/metabolism , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
...